Blackbody Radiation

Q1.

A black body radiator has a temperature of 300°C.

What is the wavelength corresponding to the peak intensity of the emitted radiation?

- \triangle **A** 5.1 × 10⁻⁶ m
- **■ B** 9.7×10^{-5} m
- **C** $1.7 \times 10^{0} \text{ m}$
- **■ D** $2.0 \times 10^5 \, \text{m}$

(Total for question = 1 mark)

Q2.

An oximeter is a device used in hospitals to monitor the oxygen level in a patient's blood.

In an oximeter, two light-emitting diodes (LEDs) are mounted opposite light sensors in a clip and attached to the patient's finger. One of the LEDs produces red light and the other produces infrared.

The intensity *I* of electromagnetic radiation received by the detector, after passing through a thickness *x* of blood, is given by

$$I = I_0 e^{-\mu x}$$

where I_0 is the intensity that would have been received if the blood were not present and μ is the attenuation coefficient of blood.

The red LED emits visible light of wavelength 650 nm and the infrared LED emits infrared of wavelength 950 nm.

The graph shows how μ varies with wavelength λ for oxygenated blood and deoxygenated blood.

It is suggested that ambient light could affect the readings produced by the oximeter.

Halogen lamps have a filament temperature of 3200 K.

Deduce whether the light from such a lamp would have a significant effect on the oximeter readings.

				((3)

(Total for question = 3 marks)

Q3.

Infrared cameras are used to create images that show the infrared radiation emitted by objects.

The photographs show the same scene taken first with an ordinary camera and then with an infrared camera.

(4)

(Total for question = 1 mark)

Deduce whether the objects shown in the photographs would be expected to have peak emissions at infrared wavelengths. Your answer should include a calculation.

lon	gest	wavelength of visible red light ≈ 700 nm
		(Total for question = 4 marks)
Q4		
A s	tar o	f diameter <i>D</i> and surface temperature <i>T</i> has luminosity <i>L</i> .
		D
Wh	at is	the luminosity of a star of diameter $\frac{1}{2}$ and surface temperature 2 T ?
×	Α	$\frac{L}{4}$
×	В	L
×	С	4 <i>L</i>
×	D	16 <i>L</i>

Q5.

The photograph shows a filament bulb.

The filament is an emitter with 35% of the power output of a black body radiator of the same temperature.

In an experiment to investigate the efficiency of a filament light bulb a p.d. was applied. The p.d. and current were measured and the light bulb was observed. The p.d. was then increased and new measurements taken.

When a small p.d. is applied to the bulb, no light is visible. If the p.d. is gradually increased, the filament starts to glow and eventually appears white.

(i) Add to the graph to show the distribution of radiation from a black body at a temperature of 2026 K.

Your answer should include a calculation.	
	(5)

(ii) Use your graph to explain why filament	
	(2)
Q6.	(Total for question = 7 marks)
	Canis Majoris. This star's radius is 1420 times star is 270 000 times the luminosity of the Sun.
A student states that the surface temperatu than the surface temperature of the Sun.	re of VY Canis Majoris must be much greater
(a) Determine whether the student's staten	nent is correct.
surface temperature of Sun = 5780 K luminosity of Sun = 3.85 × 10 ²⁶ W radius of Sun = 6.96 × 10 ⁸ m	
	(3)
(h) O-l	into a situation of the
(b) Calculate the wavelength with maximur VY Canis Majoris.	n intensity in the black body radiation spectrum of
	(2)
147	avelength =
VV	GVGIGHUH

(c) Add the position of VY Canis Majoris to the Hertzsprung Russell diagram to determine which type of star it is.

(Total for question = 7 marks)

Q7.

The light emitted from a star is due to the energy released by fusion reactions taking place in the core of the star. Our Sun is a main sequence star with a luminosity of 3.85×10^{26} W.

An analysis of the Sun's spectrum gives $\lambda_{max} = 502 \text{ nm}$

Use the data provided to calculate the radius of the Sun.

	(4)
Radius of the Sun =	

(Total for question = 4 marks)

•	\mathbf{a}

Solar panels consisting of combinations of photovoltaic cells use energy in the radiation received from the Sun to generate electricity.

An advertisement for solar panels claims that the intensity of radiation from the Sun incident at the top of the Earth's atmosphere is more than 2 kW m^{-2} .

at the top of the Earth's atmosphere is more than 2 kW m .
Assess the validity of this claim.
radius of Sun = 6.96×10^8 m
surface temperature of Sun = 5790 K
distance from Sun to Earth = $1.50 \times 10^{11} \mathrm{m}$
(4)
(Total for question = 4 marks)
Q9.
In 2016 the Breakthrough Starshot initiative was announced. This project intends to send a fleet of small probes to Proxima Centauri, the nearest star to the Sun. This journey would take about twenty years.
The radiation intensity at Earth from Proxima Centauri is 3.25 × 10 ⁻¹¹ W m ⁻² . The luminosity of the Sun is $L_{\rm e^-}$
(i) Show that the luminosity of Proxima Centauri is about 0.002 L_{\odot}
distance to Proxima Centauri = 4.00×10^{16} m $L_{\odot} = 3.85 \times 10^{26}$ W

•••••		
(ii) Proxima Centauri	i is described on a website as a main sequence star.	
Determine whethe position on the ma	er the surface temperature of Proxima Centauri is consistent with a ain sequence of the Hertzsprung-Russell diagram.	(2)
radius of Proxima	Centauri = 9.81 × 10 ⁷ m	(3)
${\rm Luminosity}/L_{\rm o}$	10 ⁶ 10 ² 1 10 ² 10 ² 10 ⁴ 10 ² 10 ⁴ 10 ⁴ 10 ² 10 ⁴	

(Total for question = 3 marks)

_		
$\overline{}$	4	^

A black body radiator of temperature *T* and surface area *A* has a luminosity *L*.

Which of the following is the luminosity of a black body radiator with surface area A/2 and temperature 2*T*?

(1)

- \triangle A $\frac{L}{2}$
- \square B L
- \square C 4L
- \square **D** 8L

(Total for question = 1 mark)

Q11.

The photograph shows a filament bulb.

The filament is an emitter with 35% of the power output of a black body radiator of the same temperature.

When a potential difference (p.d) of 2.0 V is applied across the bulb, there is a current of 0.37 A in the filament.

surface area of filament = 3.9 × 10⁻⁶ m²

(3)

Temperature =

(Total for question = 3 marks)

Mark Scheme – Blackbody Radiation

Q1.

Question Number	Answer	Additional guidance	Mark
	А	(5.1 × 10 ⁻⁶ m)	(1)

Q2.

Question Number	Acceptable Answer		Additional Guidance	Mark
	• Use of $\lambda_{\text{max}} T = 2.898 \times 10^{-3} \text{ m K}$	(1)	Ignore references to the wavelength of red light	
	• $\lambda_{\text{max}} = 910 \text{ nm}$	(1)		
	Yes, because peak emission occurs at a wavelength close to 950 nm	(1)	Example of calculation: $\lambda_{\text{max}} = \frac{2.898 \times 10^{-3} \text{ m K}}{3200 \text{ K}} = 9.06 \times 10^{-7} \text{ m}$	3

Q3.

Question Number	Acceptable answers		Additional guidance	Mark
	 Use of λ_{max}T = 2.898 × 10⁻³ m K with sensible temperature expressed in Kelvin E.g. λ_{max} = 9.89 × 10⁻⁶ m for 293 K Value is greater than max wavelength of red light so is in IR region Or (if starting from 700 nm) Use of λ_{max}T = 2.898 × 10⁻³ m K T = 4100 K Comparison with stated sensible temperature (°C or K) Temperature is too high so wavelength greater than max wavelength of red light so is in IR region 	(1) (1) (1)	Example of calculation $\lambda_{\text{max}}T = 2.898 \times 10^{-3} \text{ m K}$ $\lambda_{\text{max}} = 2.898 \times 10^{-3} \text{ m K} / 293 \text{ K}$ $\lambda_{\text{max}} = 9.89 \times 10^{-6} \text{ m}$ MP4 consistent with calculation	4

Q4.

Question Number	Acceptable answer	Additional guidance	Mark
	С	The only correct answer is C: luminosity is proportional to temperature ⁴ which means a 16-fold increase, and luminosity is proportional to area, which is proportional to diameter ² , and so means a 4-fold decrease, so there is a 4-fold increase overall A is not the correct answer because this only accounts for the decrease due to decreasing diameter B is not the correct answer because this is the answer obtained if the power applied to temperature is 2 instead of 4 D is not the correct answer because the effect of area is not included	1

Q5.

Question Number	Acceptable answers		Additional guidance	Mark
(i)	 Use of λ_{max} T = 2.898 × 10⁻³ m K λ_{max} = 1.4 × 10⁻⁶ (m) correct black body radiation shape peak at correct wavelength line not zero at long wavelength and not positive at 0.0 on wavelength axis 	(1) (1) (1) (1) (1)	Example of calculation and graph $\lambda_{\text{max}} \times 2026 \text{ K} = 2.898 \times 10^{-3} \text{ m K}$ $\lambda_{\text{max}} = 1.43 \times 10^{-6} \text{ m}$	5
(ii)	 Most radiation at infrared or λ_{max} isn't in the visible spectrum or only a small proportion of radiation/power in visible spectrum Ratio of useful output/input is therefore very small Or so proportion of energy transfer that is useful is small 	(1) (1)		2

Q6.

Question Number	Acceptable answers		Additional guidance	Mark
(a)	 Use of L = 4π r² σT⁴ With 270 000 or 1420 T = 3494 K which is smaller than the temperature of the Sun, so it is not correct Or T = 0.605 T_{Sun} which is smaller than the temperature of the Sun, so it is not correct 	(1) (1)	Example of calculation $3.85 \times 10^{26} \text{ W} \times 270\ 000 = 4 \times \pi \times 5.67 \times 10^{-8} \times (1420 \times 6.96 \times 10^8 \text{ m})^2 \times T^4$ T = 3494 K	3

Question Number	Acceptable answers	Additional guidance	Mark
(b)	• Use of $\lambda_{\text{max}} T = 2.898 \times 10^{-3} \text{ m K}$ • $\lambda_{\text{max}} = 8.29 \times 10^{-7} \text{ m (ecf for } T \text{ from (a))}$	Example of calculation $\lambda_{\text{max}} \times 3494 \text{ K} = 2.898 \times 10^{-3} \text{ m K}$ $\lambda_{\text{max}} = 8.29 \times 10^{-7} \text{ m}$	2

Question Number	Acceptable answers	Additional guidance	Mark
(c)	Add to top right Red giant/supergiant	both marking points	2

Q7.

Question Number	Acceptable answers	Additional guidance	Mark
	• Use of $\lambda_{\text{max}}T = 2.9 \times 10^{-3}$ (1) • $T = 5800 \text{ K}$ [accept 5780 K and 6000 K] (1) • Use of $L = 4\pi r^2 \sigma T^4$ (1) • $r = 6.9 \times 10^8 \text{ m}$ (1)	Example of calculation: $T = \frac{2.9 \times 10^{-3} \text{ mK}}{5.02 \times 10^{-7} \text{m}} = 5780 \text{ K}$ $r = \sqrt{\frac{3.85 \times 10^{26} \text{W}}{4\pi \times 5.67 \times 10^{-8} \text{Wm}^{-2} \text{K}^{-4} \times (5800 \text{K})^{4}}} = 6.91 \times 10^{8} \text{m}$	4

Q8.

Question Number	Acceptable Answer	Additional Guidance	Mark
	• Use of $L = 4\pi r^2 \sigma T^4$ (1) • Use of $I = \frac{L}{4\pi d^2}$ (1) • $I = 1.37 \text{ (kW m}^{-2}$)	$L=4\pi (6.96\times 10^8 \text{ m})^2 \times 5.67\times 10^{-8} \text{W m}$	
	This is less than 2 (kW m ⁻²) and so the claim is false. (1)	$I = \frac{3.88 \times 10^{26} \text{W}}{4\pi (1.50 \times 10^{11} \text{m})^2} = 1372 \text{ W m}^{-2}$	4

Q9.

Question	Acceptable Answers	Additional Guidance	Mark
Number			
(i)	• use of $I = L / 4\pi d^2$ (1)	Example of calculation $3.25 \times 10^{-11} \text{ W m}^{-2} = L / 4\pi (4.00 \times 10^{16} \text{ m})^2$	
	• $L = 6.53 \times 10^{23} \mathrm{W}$ (1)	$L = 6.53 \times 10^{23} \text{ W}$	
	• = 0.17% of Sun (1)	$6.53 \times 10^{23} \text{ W} / 3.85 \times 10^{26} \text{ W} = 0.17\%$	3
(ii)	• use of $L = \sigma A T^4$	Example of calculation	
	• use of $L = \sigma A I$ (1)		
	• $T = 3124 \text{ (K)}$ (1)	$\times 10^7 \mathrm{m})^2 \times T^4$	
	Statement relating calculated values of T and L to main sequence on	T = 3124 K	3
	H-R diagram		

Q10.

Question	Answer	Mark
Number		
	D - 8L	1
	Incorrect Answers:	
	Correct method: ÷ 2 for area change and × 24 for temperature change	
	A – only applies ÷ 2 for area change	
	B – applies ÷ 2 for area change and × 2 for temperature change	
	C – applies \div 1/2 for area change and \times 2 for temperature change	
	Or applies \div 2 for area change and \times (2 \times 4) for temperature change	

Q11.

Question Number	Acceptable answers	Additional guidance	Mark
	• Use of $P = IV$ (1)	Example of calculation P = 2.0 V × 0.37 A = 0.74 W	
	• Use of $L = A\sigma T^4$ (1)	$0.74 \text{ W} = 0.35 \times 3.9 \times 10^{-6} \text{ m}^2 \times 5.67 \times 10^{-8} \text{ Wm}^{-2}\text{K}^{-4} \text{ W} \times \text$	
	• $T = 1800 \text{ K}$ (1)	$T^4 = 9.56 \times 10^{12} \mathrm{K}^4$	
		T = 1758 K	3