Trigonometry Questions

4 The triangle ABC, shown in the diagram, is such that AC = 8 cm, CB = 12 cm and angle $ACB = \theta$ radians.

The area of triangle $ABC = 20 \,\mathrm{cm}^2$.

- (a) Show that $\theta = 0.430$ correct to three significant figures. (3 marks)
- (b) Use the cosine rule to calculate the length of AB, giving your answer to two significant figures. (3 marks)
- (c) The point D lies on CB such that AD is an arc of a circle centre C and radius 8 cm. The region bounded by the arc AD and the straight lines DB and AB is shaded in the diagram.

Calculate, to two significant figures:

(i) the length of the arc AD; (2 marks)

(ii) the area of the shaded region. (3 marks)

1 The diagram shows a sector of a circle of radius 5 cm and angle θ radians.

The area of the sector is 8.1 cm².

- (a) Show that $\theta = 0.648$. (2 marks)
- (b) Find the perimeter of the sector. (3 marks)

2 The diagram shows a triangle ABC.

The lengths of AC and BC are 4.8 cm and 12 cm respectively.

The size of the angle BAC is 100° .

- (a) Show that angle $ABC = 23.2^{\circ}$, correct to the nearest 0.1° . (3 marks)
- (b) Calculate the area of triangle ABC, giving your answer in cm² to three significant figures. (3 marks)

1 The diagram shows a sector OAB of a circle with centre O.

The radius of the circle is 6 cm and the angle AOB is 1.2 radians.

(a) Find the area of the sector OAB.

(2 marks)

(b) Find the perimeter of the sector OAB.

(3 marks)

4 The triangle ABC, shown in the diagram, is such that BC = 6 cm, AC = 5 cm and AB = 4 cm. The angle BAC is θ .

- (a) Use the cosine rule to show that $\cos \theta = \frac{1}{8}$. (3 marks)
- (b) Hence use a trigonometrical identity to show that $\sin \theta = \frac{3\sqrt{7}}{8}$. (3 marks)
- (c) Hence find the area of the triangle ABC. (2 marks)

3 The diagram shows a sector OAB of a circle with centre O and radius 20 cm. The angle between the radii OA and OB is θ radians.

The length of the arc AB is 28 cm.

(a) Show that $\theta = 1.4$. (2 marks)

(b) Find the area of the sector *OAB*. (2 marks)

(c) The point D lies on OA. The region bounded by the line BD, the line DA and the arc AB is shaded.

The length of OD is 15 cm.

- (i) Find the area of the shaded region, giving your answer to three significant figures.

 (3 marks)
- (ii) Use the cosine rule to calculate the length of BD, giving your answer to three significant figures. (3 marks)

Trigonometry Answers

			-	+
4(a)	Area of triangle $=\frac{1}{2}(12)(8)\sin\theta$	M1		Use of $\frac{1}{2}ab\sin C$ or full equivalent
	$\sin\theta = \frac{20}{48} [=0.41(666)]$	A1		OE (giving 0.412 to 0.42)
	$\Rightarrow \theta = 0.4297(7) = 0.430 \text{ to } 3\text{sf}$	A1	3	AG(need to see >3sf value)
(b)	${AB^2 =} 8^2 + 12^2 - 2 \times 8 \times 12 \times \cos\theta$	M1		
	= 64 + 144 - 174.5	m1		Accept 33 to 34 inclusive if three values not separate
	$\Rightarrow AB = 5.78 = 5.8 \text{ cm to } 2\text{sf}$	A1	3	If not 2sf condone 5.78 to 5.79 inclusive. Condone ±
(c)(i)	$Arc AD = 8\theta;$	M1;	_	
	= 3.44 = 3.4 cm to 2sf	A1	2	If not 2sf condone 3.438 to 3.44 inclusive
	1			
(ii)	Area of sector = $\frac{1}{2}r^2\theta$	M1		Stated or used [or 13.7(6) seen]
	Shaded area = Area of triangle - sector area	M1		Difference of areas
	Shaded area = $20 - 0.5 \times 8^2 \times \theta$			
	$= 6.2 \text{ cm}^2 \text{ to } 2\text{sf}$	A1	3	Condone 6.24 to 6.2472
	Total		11	

1(a)	Area of sector = $\frac{1}{2}r^2\theta = \frac{1}{2} \times 5^2 \times \theta$ 12.5 θ = 8.1 \Rightarrow θ = 0.648	M1 A1	2	$\frac{1}{2}r^2\theta$ seen or used AG Condone θ = 0.648 used to show that area = 8.1
(b)	Arc = 5θ ; = 3.24 cm \Rightarrow Perimeter = $10 + \text{arc} = 13.24$ cm	M1 A1 A1√	3	5θ PI by a correct perimeter CSO Condone missing/wrong units; condone 3sf i.e. 13.2 if no obvious error NMS 3/3
	Total		5	

2(a)	$\frac{\sin B}{4.8} = \frac{\sin 100}{12}$ $\sin B = \frac{4.8 \sin 100}{12} [= 0.39(392)]$ (angle ABC) = 23.19(8) {= 23.2°.}	M1 m1 A1	3	Use of the sine rule Rearrangement AG Need >1dp eg 23.19 or 23.20
(b)	Angle C = 80° - 23.2° = 56.8°	M1		Valid method to find a relevant angle eg C (PI eg by correct sin C) or $23.2^{\circ}+10^{\circ}$
	Area of triangle = $0.5 \times 12 \times 4.8 \times \sin C$	M1		OE eg 0.5×4.8×12×cos (B+10)
	$\dots = 24.09 = 24.1 \text{ cm}^2. \text{ (to 3sf)}$	A1	3	Condone missing/wrong units
	Total		6	

1 (a)	{Area of sector =} $\frac{1}{2}r^2\theta$		M1		
	$=0.5\times36\times1.2=21.6$ cm ²		A1	2	Condone missing/wrong units throughout
(b)	$Arc = r\theta$		M1		the paper
	$= 6 \times 1.2 = 7.2$		A1		
	Perimeter = $12 + 7.2 = 19.2$ cm		A1ft	3	Ft on incorrect evaluation of 6 × 1.2
		Total		5	

4(a)	$6^2 = 4^2 + 5^2 - 2(4)(5)\cos\theta$	M1		Use of the cosine rule
	$\cos \theta = \frac{4^2 + 5^2 - 6^2}{2(4)(5)}$	m1		Rearrangement
	$\cos\theta = \frac{5}{40} = \frac{1}{8}$	A1	3	CSO AG (be convinced)
(b)	$\cos^2\theta + \sin^2\theta = 1$	M1		Stated or used (PI)
	$\sin^2\theta = \frac{63}{64}$	A1		Or better
	$\sin\theta = \frac{\sqrt{63}}{8} = \frac{\sqrt{9 \times 7}}{8} = \frac{3\sqrt{7}}{8}$	A1	3	AG (be convinced)
(c)	Area of triangle = $0.5 \times 4 \times 5 \times \sin \theta$.	M1		
	$\dots = \frac{30\sqrt{7}}{8} \text{ cm}^2.$	A1	2	OE (Condone 9.92)
	Total		8	

3(a)	$Arc = r\theta$	M1		For $r\theta$ or 20θ or PI by 20×1.4
	$28 = 20\theta \implies \theta = 1.4$	A1	2	AG
(b)	Area of sector = $\frac{1}{2}r^2\theta$	M1		$\frac{1}{2}r^2\theta$ OE seen
	$= \frac{1}{2}20^2(1.4) = 280 \text{ (cm}^2.)$	A1	2	Condone absent cm ² .
(c)(i)	Area triangle = $\frac{1}{2} \times 15 \times 20 \times \sin 1.4$	M1		Use of $\frac{1}{2}ab\sin C$ OE
	(= 147.8) Shaded area = Area of sector – area of triangle	M1		
	$= 280 - 147.8 = 132 \text{ (cm}^2.) \text{ (3sf)}$	A1ft	3	Ft on [ans (b) - 147.8] to 3sf provided [] > 0
(ii)	$\{BD^2 = \}15^2 + 20^2 - 2 \times 15 \times 20\cos 1.4$	M1		RHS of cosine rule used
	= 225+400-101.98	m1		Correct order of evaluation
	⇒ $BD = \sqrt{523.019} = 22.86$ = 22.9 (cm) to 3 sf	A1	3	Condone absent cm
	Total		10	