Transformations Questions

6 (a) Describe the geometrical transformation that maps the curve with equation $y = \sin x$ onto the curve with equation:

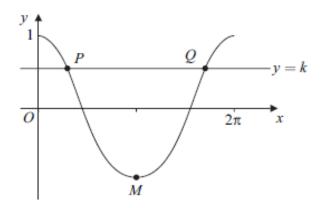
(i)
$$y = 2\sin x$$
; (2 marks)

(ii)
$$y = -\sin x$$
; (2 marks)

(iii)
$$y = \sin(x - 30^\circ)$$
. (2 marks)

(b) Solve the equation $\sin(\theta - 30^\circ) = 0.7$, giving your answers to the nearest 0.1° in the interval $0^\circ \le \theta \le 360^\circ$.

(c) Prove that
$$(\cos x + \sin x)^2 + (\cos x - \sin x)^2 = 2$$
. (4 marks)


- 8 (a) Describe the single geometrical transformation by which the curve with equation $y = \tan \frac{1}{2}x$ can be obtained from the curve $y = \tan x$. (2 marks)
 - (b) Solve the equation $\tan \frac{1}{2}x = 3$ in the interval $0 < x < 4\pi$, giving your answers in radians to three significant figures. (4 marks)
 - (c) Solve the equation

$$\cos\theta(\sin\theta - 3\cos\theta) = 0$$

in the interval $0 < \theta < 2\pi$, giving your answers in radians to three significant figures. (5 marks)

- 7 (a) Sketch the graph of $y = \tan x$ for $0^{\circ} \le x \le 360^{\circ}$. (3 marks)
 - (b) Write down the two solutions of the equation $\tan x = \tan 61^{\circ}$ in the interval $0^{\circ} \le x \le 360^{\circ}$. (2 marks)
 - (c) (i) Given that $\sin \theta + \cos \theta = 0$, show that $\tan \theta = -1$. (1 mark)
 - (ii) Hence solve the equation $\sin(x 20^\circ) + \cos(x 20^\circ) = 0$ in the interval $0^\circ \le x \le 360^\circ$. (4 marks)
 - (d) Describe the single geometrical transformation that maps the graph of $y = \tan x$ onto the graph of $y = \tan(x 20^\circ)$. (2 marks)
 - (e) The curve $y = \tan x$ is stretched in the x-direction with scale factor $\frac{1}{4}$ to give the curve with equation y = f(x). Write down an expression for f(x).

- 8 (a) Solve the equation $\cos x = 0.3$ in the interval $0 \le x \le 2\pi$, giving your answers in radians to three significant figures. (3 marks)
 - (b) The diagram shows the graph of $y = \cos x$ for $0 \le x \le 2\pi$ and the line y = k.

The line y = k intersects the curve $y = \cos x$, $0 \le x \le 2\pi$, at the points P and Q. The point M is the minimum point of the curve.

- Write down the coordinates of the point M. (2 marks)
- (ii) The x-coordinate of P is α .

Write down the x-coordinate of Q in terms of π and α . (1 mark)

- (c) Describe the geometrical transformation that maps the graph of $y = \cos x$ onto the graph of $y = \cos 2x$. (2 marks)
- (d) Solve the equation $\cos 2x = \cos \frac{4\pi}{5}$ in the interval $0 \le x \le 2\pi$, giving the values of x in terms of π .

Transformations Answers

L V	Solution	MATES	Total	Comments
6(a)(i)	Stretch (I) in y-direction (II)			>1 transformation is M0.
	Scale factor 2 (III)			M1 for (I) and either (II) or (III)
		M1A1	2	or (III)
(ii)	Reflection;	M1		'Reflection'/ 'reflect(ed)'
	in x-axis	A1	2	(or in y-axis or $y = 0$ or $x = 0$)
(iii)	Translation;	B1		'Translation'/'translate(d)'
	[30°]	B1	2	A felliiiiiii
	0	ы		Accept full equivalent in words provided linked to 'translation/move/shift' and
				positive x-direction
				(Note: B0 B1 is possible)
				(Note: Do D1 is possible)
(b)	$\{\theta - 30^{\circ} = \} \sin^{-1}(0.7) = 44.4^{\circ}$	M1		Inverse sine of 0.7 PI eg by sight of 44,
(-)	(0.7) 44.4			74 or better
	= 180° - 44.4°	m1		Valid method for 2 nd angle
	$\theta = 74.4^{\circ}, 165.6^{\circ}$	A1	3	Condone >1dp accuracy
	*			
(c)	$ = \cos^2 x + 2\cos x \sin x + \sin^2 x +$			
	$\cos^2 x - 2\cos x \sin x + \sin^2 x$	M1		Award for either bracket expanded
	a secondaria i san a			correctly
	$\dots = 2\cos^2 x + 2\sin^2 x$	A1		OF
	$= 2(\cos^2 x + \sin^2 x) = 2(1)$	M1		$\cos^2 x + \sin^2 x = 1$ stated or used.
	$= 2(\cos x + \sin x) - 2(1)$ = 2	A1	4	
	- Z		12	AG (be convinced)
		•		•

Question	Solution	Marks	Total	Comments
8(a)	Stretch (I) in x-direction (II) scale	M1		Need(I) and one of (II),(III)
	factor 2 (III)	A1	2	M0 if more than one transformation
(b)	$tan^{-1}3 = 1.2(49) (= \alpha)$	M1		tan ⁻¹ 3 [PI by 71.(56)°]
	$\{\frac{1}{2}x=\} \pi+\alpha;$	m1		Correct quadrant; condone degrees or mix
	$\frac{1}{2}x = 1.249; 4.3906$			
	x = 2.498 = 2.50 to 3 sf	A1		Condone 2.5 otherwise deduct <u>max</u> of 1
	x = 8.781 = 8.78 to 3 sf	A1	4	mark throughout Q8 from A marks if 'correct' rads. but to 2sf or final answers in degrees. (143°, 503°)
				As usual, accept greater accuracy answers. Ignore extra values outside the given interval (0 to 12.6). If > 2 values inside interval lose an A mark for each one.
				NB M1m0A1A0 is possible
	SC after M0 for error $\tan x = 6$; Either $x = 1.40(5)$, $4.54(7)$, $7.68(8)$, $10.8(3)$	or x = 8	0.5°, 260.	5°, 440.5°, 620.5° SC B1 (accept each rounded or truncated to 3 sf)
(c)	$\cos \theta = 0$, $\sin \theta - 3\cos \theta = 0$	M1		Need both
	$\tan \theta = \frac{\sin \theta}{\cos \theta}$ or $\tan \theta = 3$	M1		$\tan \theta = \frac{\sin \theta}{\cos \theta}$ seen/used
	$\cos\theta = 0 \implies \theta = \frac{\pi}{2} = 1.57(07)$	В1		Accept $\frac{\pi}{2}$
	or $\theta = \frac{3\pi}{2} = 4.71(23)$	B1		Accept $\frac{3\pi}{2}$
	$\tan \theta = 3 \Rightarrow$ $\theta = 1.249; 4.3906 = 1.25, 4.39 to 3sf$	A1√	5	If not correct, ft on (b) NB M0M1(B0B0)A1ft is possible
)	90°; 270°; 71.5(6)°; 251.5(6)°
	Total		11	(-),(-)

Q	Solution	Marks	Total	Comments
7(a)	y	M1		Correct shape of branch from O {to 90°} or correct shapes of branches from 90°-360°
	O 90° 180° 270° 360° x	A1		Complete graph for $0^{\circ} \le x \le 360^{\circ}$ (Asymptotes not explicitly required but graphs should show 'tendency')
		A1	3	Correct scaling on x-axis $0^{\circ} \le x \le 360^{\circ}$
(b)	61°:	B1		For 61°
(0)	241°	B1	2	For 241° and no 'extras' in the interval $0^{\circ} \le x \le 360^{\circ}$
(c)(i)	$\sin \theta = -\cos \theta \implies \frac{\sin \theta}{\cos \theta} = -1$	B1	1	AG; be convinced that the identity
	$\Rightarrow \tan \theta = -1.$			$\frac{\sin \theta}{\cos \theta} = \tan \theta \text{ is known and validly used}$
(ii)	$\Rightarrow \tan(x-20^\circ) = -1$	M1		
	$x - 20^{\circ} = \tan^{-1}(-1)$ $x - 20^{\circ} = 135^{\circ}, 315^{\circ}$	m1		
	$x = 155^{\circ}$;	A1		
	335°	A1ft	4	Ft on (180 + "155") and no 'extras' in the given interval.
(d)	Translation	B1		'Translation'/'translate(d)'
(4)	[20]	B1	2	Accept equivalent in words provided
				linked to 'translation/move/shift' (Note: B0B1 is possible)
(e)	$f(x) = \tan 4x$	B1	1	For tan 4x
	Total		13	

	0.3) PI by eg 72° or 73°
$\{x=\}$ $2\pi-\beta$ m1 Condon	
	ne degrees or mix.
x = 1.27, 5.02 A1 3 Accept inclusive	1.26 to 1.27 with 5.01 to 5.02
(b)(i) M(π,-1) B1;B1 2 B1 for e	each coordinate
(ii) $\{x_Q =\} 2\pi - \alpha$ B1 1 OE (uns	simplified)
(c) Stretch (I) in x-direction (II) scale M1 Need(I)	& one of (II),(III)
factor $\frac{1}{2}$ (III) A1 2	
(d) $\cos 2x = \cos \frac{4\pi}{5} \Rightarrow 2x = \frac{4\pi}{5}$ B1 OE. (From	om correct work)
$\Rightarrow x = \frac{2\pi}{5} \ (= \alpha)$ Condon	ne decimals/degrees
$x = \pi - \alpha$; OE M1 OE eg 2	$2x = 2\pi - \frac{4\pi}{5}$
	quadrant; e degrees/decimals/mix
(quadra	oth (OE for 2x=) with no extras ints) within the given interval. the degrees/decimals/mix
	If a solutions for x but condone lifted provided in terms of π
interval	extra values outside the given
Total 12	