Numerical Methods Questions

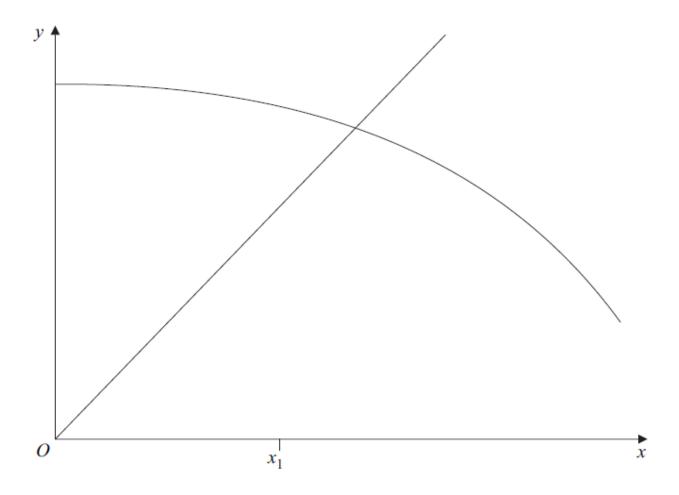
6 [Figure 1, printed on the insert, is provided for use in this question.]

The curve $y = x^3 + 4x - 3$ intersects the x-axis at the point A where $x = \alpha$.

(a) Show that α lies between 0.5 and 1.0.

(2 marks)

- (b) Show that the equation $x^3 + 4x 3 = 0$ can be rearranged into the form $x = \frac{3 x^3}{4}$.
- (c) (i) Use the iteration $x_{n+1} = \frac{3 x_n^3}{4}$ with $x_1 = 0.5$ to find x_3 , giving your answer to two decimal places. (3 marks)
 - (ii) The sketch on **Figure 1** shows parts of the graphs of $y = \frac{3 x^3}{4}$ and y = x, and the position of x_1 .


On **Figure 1**, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_2 and x_3 on the x-axis. (3 marks)

- 1 The curve $y = x^3 x 7$ intersects the x-axis at the point where $x = \alpha$.
 - (a) Show that α lies between 2.0 and 2.1.

(2 marks)

- (b) Show that the equation $x^3 x 7 = 0$ can be rearranged in the form $x = \sqrt[3]{x + 7}$.
- (c) Use the iteration $x_{n+1} = \sqrt[3]{x_n + 7}$ with $x_1 = 2$ to find the values of x_2 , x_3 and x_4 , giving your answers to three significant figures. (3 marks)

Figure 1 (for Question 6)

Numerical Methods Answers

6(a)
$$f(0.5) = -0.875$$
$$f(1) = 2$$
Change of sign : root

(b)
$$x^{3} + 4x - 3 = 0$$
$$4x = 3 - x^{3}$$
$$x = \frac{3 - x^{3}}{4}$$

(c)(i)
$$x_1 = 0.5$$

 $x_2 = 0.71875$ 0.72 AWRT
 $x_3 = 0.66$

M1		For cobweb, x_1 to curve
A1		For x_2
A1	3	All correct

AG

Total

.

1(a)	f(2) = -1	3.61		
	$ \begin{cases} f(2) = -1 \\ f(2.1) = +0.161 \end{cases} $	M1		both attempted
	change of sign $\therefore 2 < \alpha < 2.1$	A1	2	
(b)	$x^{3} - x - 7 = 0$ $x^{3} = x + 7$ $x = \sqrt[3]{x+7}$			
	$x = \sqrt[3]{x+7}$	B1	1	AG
(a)	r = 2	M1		
(c)	A ₁ - 2	M1		
	$x_2 = 2.0801$	A1		AWRT 2.08
	$x_1 = 2$ $x_2 = 2.0801$ $x_3 = 2.0862$ $x_4 = 2.09$			AWRT 2.09
	$x_4 = 2.09$	A1	3	
	Total		6	