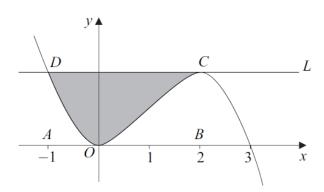
Integration Questions

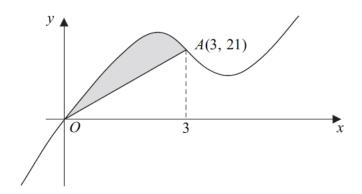
8 The diagram shows the curve with equation $y = 3x^2 - x^3$ and the line L.



- The points A and B have coordinates (-1,0) and (2,0) respectively. The curve touches the x-axis at the origin O and crosses the x-axis at the point (3,0). The line L cuts the curve at the point D where x=-1 and touches the curve at C where x=2.
- (a) Find the area of the rectangle ABCD. (2 marks)
- (b) (i) Find $\int (3x^2 x^3) dx$. (3 marks)
 - (ii) Hence find the area of the shaded region bounded by the curve and the line L.

 (4 marks)
- (c) For the curve above with equation $y = 3x^2 x^3$:
 - (i) find $\frac{dy}{dx}$; (2 marks)
 - (ii) hence find an equation of the tangent at the point on the curve where x = 1; (3 marks)
 - (iii) show that y is decreasing when $x^2 2x > 0$. (2 marks)
- (d) Solve the inequality $x^2 2x > 0$. (2 marks)

5 The curve with equation $y = x^3 - 10x^2 + 28x$ is sketched below.



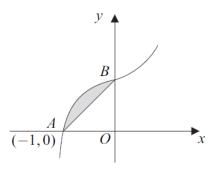
The curve crosses the x-axis at the origin O and the point A(3, 21) lies on the curve.

(b) (i) Find
$$\int (x^3 - 10x^2 + 28x) dx$$
. (3 marks)

(ii) Hence show that
$$\int_0^3 (x^3 - 10x^2 + 28x) dx = 56\frac{1}{4}$$
. (2 marks)

(iii) Hence determine the area of the shaded region bounded by the curve and the line OA. (3 marks)

6 The curve with equation $y = 3x^5 + 2x + 5$ is sketched below.



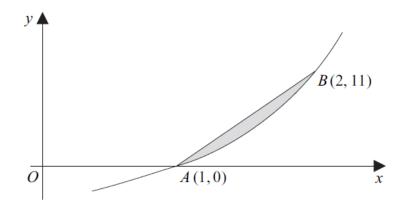
The curve cuts the x-axis at the point A(-1,0) and cuts the y-axis at the point B.

(a) (i) State the coordinates of the point B and hence find the area of the triangle AOB, where O is the origin. (3 marks)

(ii) Find
$$\int (3x^5 + 2x + 5) dx$$
. (3 marks)

- (iii) Hence find the area of the shaded region bounded by the curve and the line AB.

 (4 marks)
- (b) (i) Find the gradient of the curve with equation $y = 3x^5 + 2x + 5$ at the point A(-1,0). (3 marks)
 - (ii) Hence find an equation of the tangent to the curve at the point A. (1 mark)
- (b) The curve with equation $y = x^3 + 4x 5$ is sketched below.



The curve cuts the x-axis at the point A(1,0) and the point B(2,11) lies on the curve.

- (i) Find $\int (x^3 + 4x 5) dx$. (3 marks)
- (ii) Hence find the area of the shaded region bounded by the curve and the line AB.

 (4 marks)

Integration Answers

8(a)	$y_D = 3 + 1 = 4$ or $y_C = 12 - 8 = 4$	M1		Attempt at either y coordinate
	Area $ABCD = 3 \times 4 = 12$	A1	2	
(b)(i)	$x^3 - \frac{x^4}{4} \qquad (+C)$	M1 A1 A1	3	Increase one power by 1 One term correct unsimplified All correct unsimplified (condone no +C)
(ii)	Sub limits -1 and 2 into their (b) (i) ans	M1		May use both -1, 0 and 0, 2 instead
	$\left[8-4\right] - \left[-1 - \frac{1}{4}\right] \qquad = 5\frac{1}{4}$	A1		
	Shaded area = "their" (rectangle– integral)	M1		Alt method: difference of two integrals
	$=12-5\frac{1}{4}=6\frac{3}{4}$	A1	4	CSO. Attempted M2, A2
(c)(i)	dv 2	M1		One term correct
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x - 3x^2$	A1	2	All correct (no +C etc)
(ii)	When $x = 1$, $y = 2$ when $x = 1$,	B1		May be implied by correct tgt equation
	$\frac{dy}{dx}$ = 3 as 'their' grad of tgt	M1√		Ft their derivative when $x = 1$
	Tangent is $y-2=3(x-1)$	A1	3	Any correct form $y = 3x - 1$ etc
(iii)	Decreasing when $\frac{dy}{dx} = 6x - 3x^2 < 0$	M1		Watch no fudging here!! May work backwards in proof.
	$3(2x-x^2)<0 \Rightarrow x^2-2x>0$	A1	2	AG (be convinced no step incorrect)
(d)	Two critical points 0 and 2	M1		Marked on diagram or in solution
	x > 2, $x < 0$ ONLY	A1	2	or M1 A0 for $0 < x < 2$ or $0 > x > 2$
			_	SC B1 for $x > 2$ (or $x < 0$)
	Total		18	

(b)(i)	$\frac{x^4}{4} - \frac{10x^3}{3} + 14x^2 (+c)$	M1 A1 A1	3	One term correct unsimplified Another term correct unsimplified All correct unsimplified (condone missing $+ c$)
(ii)	$\left[\frac{81}{4} - 90 + 126\right] \qquad (-0)$ $= 56\frac{1}{4}$	M1 A1	2	Attempt to sub limit 3 into their (b)(i) AG Integration, limit sub'n all correct
(iii)	Area of triangle = $31\frac{1}{2}$	В1		Correct unsimplified $\frac{1}{2} \times 21 \times 3$
	Shaded Area = $56\frac{1}{4}$ - triangle area = $24\frac{3}{4}$	M1 A1	3	Or equivalent such as $\frac{99}{4}$

	Total		14	any form e.g. $y = 17x + 17$
(ii)	y = "their gradient" $(x + 1)$	B1√	1	Must be finding tangent – not normal
	when $x = -1$, gradient = 17	A1	3	cso
(b)(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 15x^4 + 2$	M1 A1		One term correct All correct (no +c etc)
	Area of shaded region = $3\frac{1}{2} - 2\frac{1}{2} = 1$	B1√	4	FT their integral and triangle (very generous)
	Area under curve = $3\frac{1}{2}$	A1		CSO (no fudging)
	$\left[0\right] - \left[\frac{1}{2} + 1 - 5\right]$	M1		Attempt to sub limit(s) of -1 (and 0) Must have integrated
(iii)	Area under curve = $\int_{-1}^{0} f(x) dx$	В1		Correctly written or $F(0) - F(-1)$ correct
	6 2 2 (may have + c or not)	A1 A1	3	One term correct All correct unsimplified
(ii)	$\frac{3x^6}{6} + \frac{2x^2}{2} + 5x \text{ or } \frac{x^6}{2} + x^2 + 5x$	M1		Raise one power by 1
	$= 2\frac{1}{2}$	A1	3	
6(a)(i)	$B(0,5)$ Area $AOB = \frac{1}{2} \times 1 \times 5$	B1 M1		Condone slip in number or a minus sign