
Matrix Algebra 

Questions 
 
Q1. 
  

The matrix A is given by 

 

(a)  Show that 2 is a repeated eigenvalue of A and find the other eigenvalue. 

(5) 

(b)  Hence find three non-parallel eigenvectors of A. 

(4) 

(c)  Find a matrix P such that P−1AP is a diagonal matrix. 

(2) 

  

(Total for question = 11 marks) 

  

 
 
 
Q2. 
  

 

Given that  is an eigenvector for A 

(a)  (i)  determine the eigenvalue corresponding to this eigenvector 

(1) 
(ii)  hence show that p = 2 

(2) 
(iii)  determine the remaining eigenvalues and corresponding eigenvectors of A 

(7) 

(b)  Write down a matrix P and a diagonal matrix D such that A = PDP−1 

(1) 

(c)  (i)  Solve the differential equation , where k is a constant. 

(2) 
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With respect to a fixed origin O, the velocity of a particle moving through space is 
modelled by 

By considering  
(ii)  determine a general solution for the displacement of the particle. 

(4) 

  

(Total for question = 17 marks) 

  

 
 
 
 
Q3. 
  

Given that 

 

(a)  find the characteristic equation for the matrix A, simplifying your answer. 

(2) 

(b)  Hence find an expression for the matrix A-1 in the form λA + μI, where λ and μ are 
constants to be found. 

(3) 

  

(Total for question = 5 marks) 
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Q4. 
  

Matrix M is given by 

 

where a and b are integers, such that a < b 

Given that the characteristic equation for M is 

λ3 – 7λ2 + 13λ + c = 0 

where c is a constant, 

(a)  determine the values of a, b and c. 

(5) 

(b)  Hence, using the Cayley–Hamilton theorem, determine the matrix M –1 

(3) 

  

(Total for question = 8 marks) 

  

 
 
 
 
Q5. 
  

 

Find a matrix P and a diagonal matrix D such that D = P–1AP 

(7) 

  

(Total for question = 7 marks) 
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Q6. 
  

Given that 

 

(a)   find the characteristic equation of the matrix A. 

(2) 

(b)   Hence show that A3 = 43A – 42I. 

(3) 

  

(Total for question = 5 marks) 

  

 
 
 
 
 
Q7. 
  

The matrix M is given by 

 

(a)   Show that 4 is an eigenvalue of M, and find the other two eigenvalues. 

(4) 

(b)   For each of the eigenvalues find a corresponding eigenvector. 

(4) 

(c)   Find a matrix P such that P–1MP is a diagonal matrix. 

(2) 

  

(Total for question = 10 marks) 
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Q8. 
  

(i) 

 

(a)  Show that the characteristic equation for A is λ2 – 5λ + 6 = 0 
(2) 

(b)  Use the Cayley-Hamilton theorem to find integers p and q such that 

A3 = pA + qI 

(3) 

(ii)  Given that the 2 × 2 matrix M has eigenvalues –1 + i and –1 – i, 

with eigenvectors  respectively, find the matrix M. 
(5) 

  

(Total for question = 10 marks) 

  

 
 
Q9. 
  

 

where k is a constant. 

(a)  Show that, in terms of k, a characteristic equation for M is given by 

 

(3) 

Given that det M = 5 

(b)  (i)  find the value of k 

(ii)  use the Cayley-Hamilton theorem to find the inverse of M. 
(7) 

  

(Total for question = 10 marks) 

  

 
 

 Ch.5 Matrix Algebra



Mark Scheme – Matrix Algebra 
 
Q1. 
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Q2. 
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 Q3. 
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Q4. 
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Q5. 
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Q6. 
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Q7. 
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Q8. 
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Q9. 
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