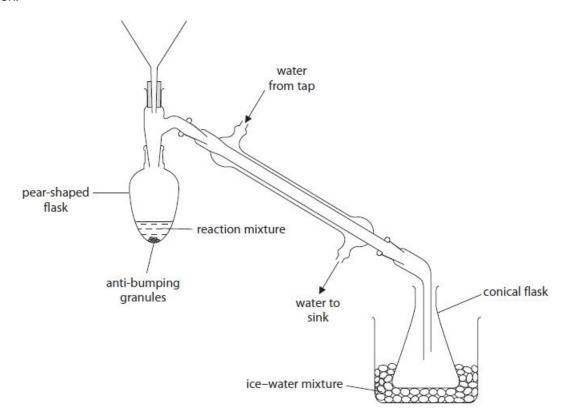
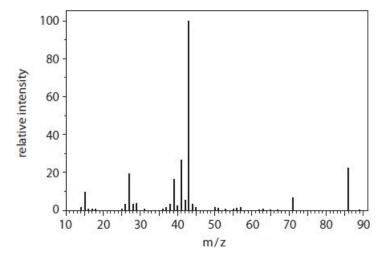
### **Questions**


#### Q1.

This question is about the preparation of a sample of the ketone, 3-methylbutan-2-one.


A student's research suggested that 3-methylbutan-2-one may be prepared by oxidising 3-methylbutan-2-ol with acidified potassium dichromate(VI) solution.

The student sets up the apparatus as shown in the diagram. You may assume that all the equipment is suitably clamped.

The student adds dilute sulfuric acid to the pear-shaped flask. A mixture of potassium dichromate(VI) and 3-methylbutan-2-ol is then added slowly to the dilute sulfuric acid in the flask.



The mass spectrum of pure 3-methylbutan-2-one is shown.



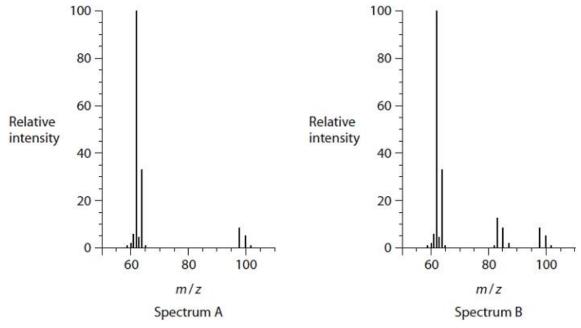
(i) State how you would find the molar mass of 3-methylbutan-2-one from the mass spectrum.

(1)

(ii) The mass spectrum shows a peak at m/z = 43.

Draw the **displayed** formulae of two fragment **ions** that might be responsible for this peak.

(2)


(Total for question = 3 marks)

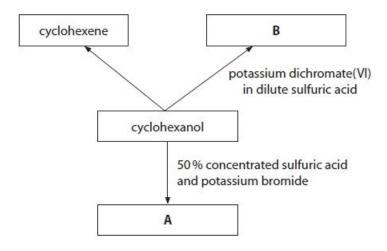
Curly arrows are not required.

Q2. Ethane can also be converted into chloroethane. (i) Give the reagent and condition required to convert ethane into chloroethane. (1) Reagent Condition (ii) What is the mechanism and type of reaction by which ethane is converted into chloroethane? (1) A electrophilic addition В free radical addition C free radical substitution D D nucleophilic substitution (iii) Further reactions of chloroethane result in the formation of small amounts of the isomers 1,1-dichloroethane and 1,2-dichloroethane. Write equations to show the formation of these products.

(3)

(iv) The mass spectra of the two isomers of dichloroethane are shown.

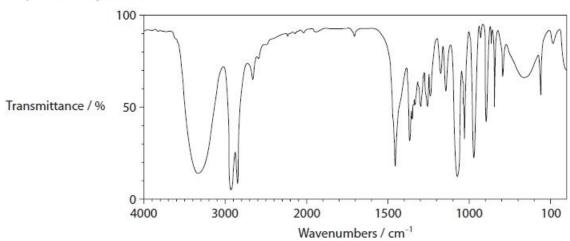



Deduce the molecular formulae of the species responsible for the molecular ion peaks at m/z 98, 100 and 102.

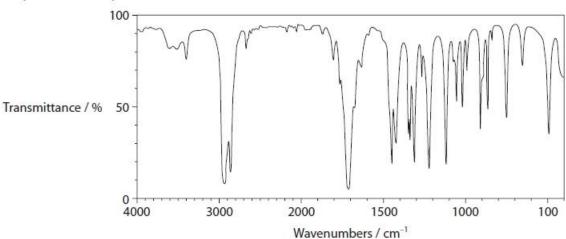
The molecular formulae for the species producing these peaks are the same in both spectra.

| (v) State why in both spectra the peaks at 98, 100 and 102 have different relative intensities.                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------|
| (1)                                                                                                                                              |
|                                                                                                                                                  |
|                                                                                                                                                  |
| (vi) Explain how the presence of the peaks at 83, 85 and 87 in Spectrum B allows the identification of the isomer responsible for this spectrum. |
| (2)                                                                                                                                              |
|                                                                                                                                                  |
|                                                                                                                                                  |
|                                                                                                                                                  |
|                                                                                                                                                  |
|                                                                                                                                                  |
| (Total for question = 10 marks)                                                                                                                  |

Q3.


This question is about some reactions of cyclohexanol.



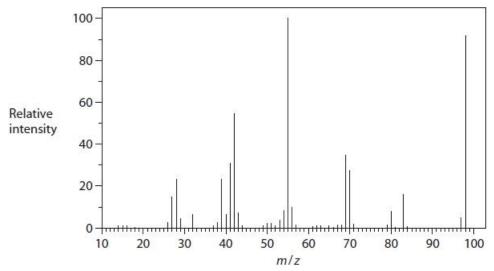

(i) Give the name  ${f and}$  displayed formula of compound  ${f B}.$ 

(ii) The infrared (IR) spectra of cyclohexanol and compound **B** are shown.

IR Spectrum of cyclohexanol



IR Spectrum of compound B




Identify the bonds, using  ${f both}$  IR spectra, that help to confirm the reaction of cyclohexanol to produce compound  ${f B}.$ 

Your answer must include the wavenumber ranges of any relevant bonds.

| <br> |
|------|
|      |
|      |
|      |
|      |
|      |
|      |
|      |
|      |

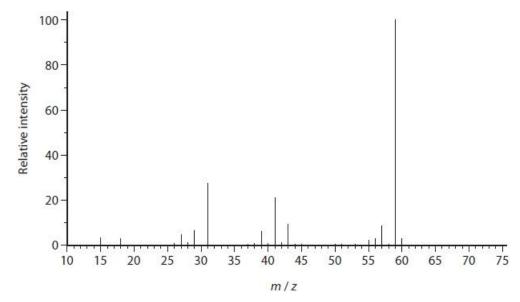
(iii) The mass spectrum of compound **B** is shown.



Deduce the relative molecular mass of compound  ${\bf B}$  using the mass spectrum. Justify your answer.

| (1) |
|-----|
|     |
|     |
|     |
|     |
|     |

(iv) In the mass spectrum of cyclohexanol, there is a peak at m/z = 83. Give the formula of a fragment that could be responsible for this peak.


Q4.

This question is about 2-methylpropan-2-ol.

(a) Draw the fully **displayed** formula of 2-methylpropan-2-ol.

(1)

(b) The mass spectrum of 2-methylpropan-2-ol is shown.



| (i) | The relative molecular mass of 2-methylpropan-2-ol is 74.                         |
|-----|-----------------------------------------------------------------------------------|
| (   | Give a possible reason why there is no molecular ion peak in the mass spectrum of |
| 2   | 2-methylpropan-2-ol.                                                              |

(ii) Write the formula for a species that could be responsible for the peak at m/z = 59.

(1)

(1)

| (c) The equation for the complete combustion of 2-methylpropa |
|---------------------------------------------------------------|
|---------------------------------------------------------------|

$$C_4H_{10}O(I) + 6O_2(g) \rightarrow 4CO_2(g) + 5H_2O(I)$$

(i) Using the bond enthalpies shown in the table, calculate a value for the enthalpy change, in kJ mol<sup>-1</sup>, for the complete combustion of 2-methylpropan-2-ol.

(4)

| Bond | Mean bond enthalpy / kJ mol <sup>-1</sup> |
|------|-------------------------------------------|
| с—с  | 347                                       |
| С—Н  | 413                                       |
| с—о  | 358                                       |
| О—Н  | 464                                       |
| 0=0  | 498                                       |
| C=0  | 805                                       |

| (ii) 2 | 2-methylpropan-2-ol burns in air with a smoky flame.                         |
|--------|------------------------------------------------------------------------------|
| Ex     | plain how burning with a smoky flame affects the value of the experimentally |
| de     | termined enthalpy change of combustion.                                      |

| determined enthalpy change of combustion.                                                                                                                                                                          | (2) |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                    |     |
| (iii) A Data Book value for the enthalpy change of combustion of 2-methylpropan-2-ol is -2643.8 kJ mol <sup>-1</sup> .  Give the main reason for the difference between this value and your answer to part (c)(i). | S   |
|                                                                                                                                                                                                                    | (1) |
|                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                    |     |
|                                                                                                                                                                                                                    |     |

(Total for question = 10 marks)

This question is about the identification of an alcohol, **X**.

(a) Alcohol **X** has the following percentage composition by mass:

The molecular ion peak in the mass spectrum for alcohol **X** occurs at m/z = 88. Use all of these data to show that the molecular formula for alcohol **X** is  $C_5H_{12}O$ . Include your working.

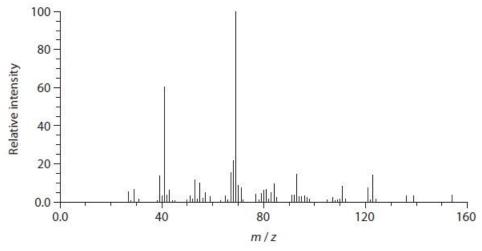
(2)

| (b) | (i) | When alcohol X | is oxidised, | a carboxylic | acid is formed |
|-----|-----|----------------|--------------|--------------|----------------|
|     | _   |                |              |              |                |

State what information this gives about alcohol  ${\bf X}$ .

(1)

(ii) Draw the **displayed** formulae of the four possible structural isomers that could be alcohol **X**.

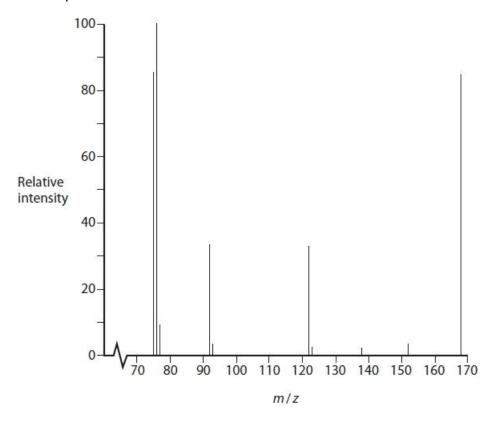

(3)

| Alcohol 1    | Alcohol 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 200 T R 0200 | and the same of th |
| Alcohol 3    | Alcohol 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| (Total for question                                                                                                                       | on = 9 marks) |
|-------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|                                                                                                                                           |               |
|                                                                                                                                           |               |
|                                                                                                                                           |               |
|                                                                                                                                           |               |
|                                                                                                                                           |               |
|                                                                                                                                           |               |
|                                                                                                                                           | ,             |
| (iv) Alcohol <b>X</b> has a branched chain. Identify alcohol <b>X</b> , explaining your reasoning.                                        | (2)           |
| (iv) Alcohol Y has a branched chain                                                                                                       |               |
|                                                                                                                                           |               |
|                                                                                                                                           |               |
|                                                                                                                                           |               |
|                                                                                                                                           |               |
|                                                                                                                                           |               |
|                                                                                                                                           | (1)           |
| (iii) The mass spectrum of alcohol <b>X</b> has a major peak at $m/z = 45$ . Draw the structure of the species that could give this peak. | (4)           |

## Q6.

The mass spectrum of geraniol is shown.




| (i)  | Show that this mass spectrum can be used to confirm the molar mass of geraniol. | (1) |
|------|---------------------------------------------------------------------------------|-----|
| <br> | Identify an ion that could be recognible for the peak at $m/z = 60$             |     |
| (11) | Identify an ion that could be responsible for the peak at $m/z = 69$ .          | (1) |

(Total for question = 2 marks)

Q7.

Organic compound  ${\bf D}$  contains the elements carbon, hydrogen, oxygen and nitrogen only. Part of the mass spectrum of  ${\bf D}$  is shown.



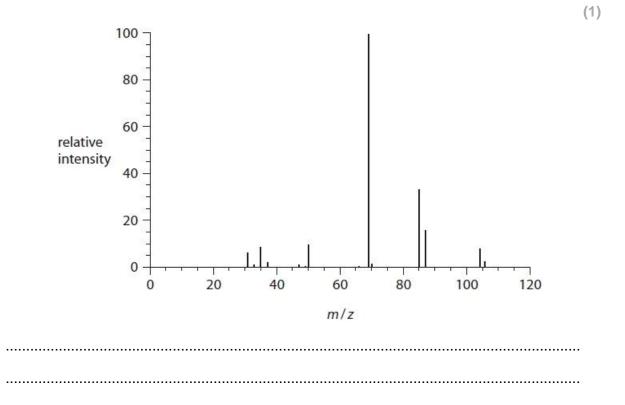
Deduce the molecular formula of **D**. Justify your answer.

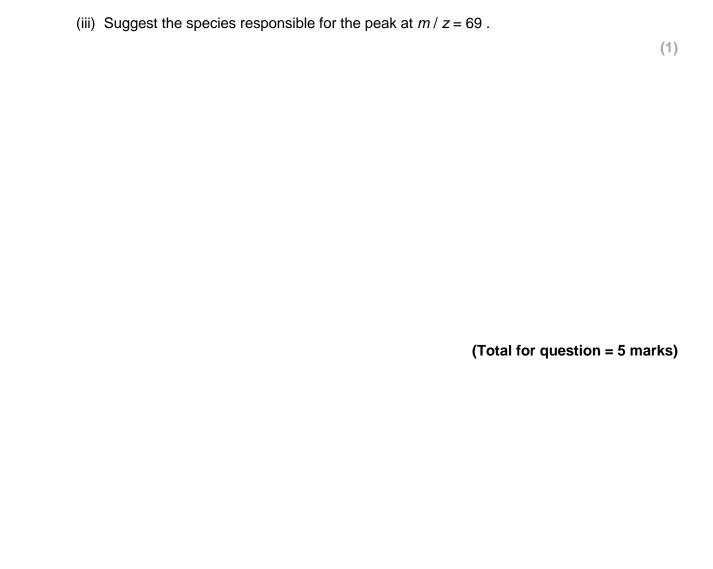
| (4) |
|-----|
|     |
|     |
|     |
|     |
|     |
|     |
|     |
|     |

(Total for question = 2 marks)

#### Q8.

This question is about organic compounds containing fluorine and chlorine.

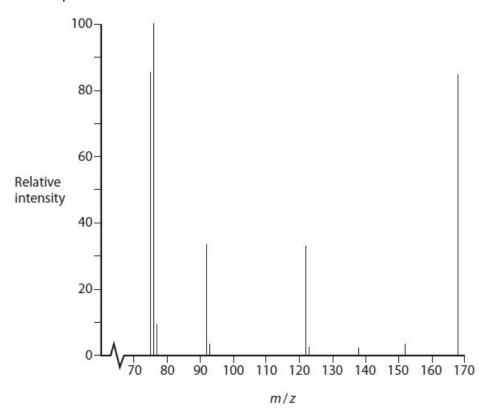

The use of chlorofluorocarbons as refrigerants has ceased due to concerns about their effects on the ozone layer. One such compound is dichlorodifluoromethane.


(i) A different refrigerant contains 34.0% chlorine and 54.5% fluorine by mass, with the remainder carbon.

Calculate the empirical formula of this compound.

(3)

(ii) Use the mass spectrum to show that the empirical and the molecular formulae of this compound are the same.






Q9.

Organic compound **D** contains the elements carbon, hydrogen, oxygen and nitrogen only.

Part of the mass spectrum of **D** is shown.



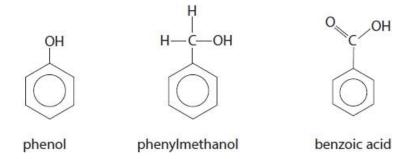
Compound **D** contains a benzene ring.

| (i) | Give the molecular   | formula of the | species that | causes the | peak at <i>m / z</i> | z = 76  in t | he mass |
|-----|----------------------|----------------|--------------|------------|----------------------|--------------|---------|
| spe | ectrum of <b>D</b> . |                |              |            |                      |              |         |

(1)

(ii) Draw the structures of the three possible isomers of  ${\bf D}$  containing a benzene ring.

(iii) The <sup>13</sup>C NMR spectrum of compound **D** has four peaks.


Identify the structure of **D**. Justify your answer by labelling the different carbon environments in **all** the structures drawn in (ii).

(3)

(Total for question = 6 marks)

#### Q10.

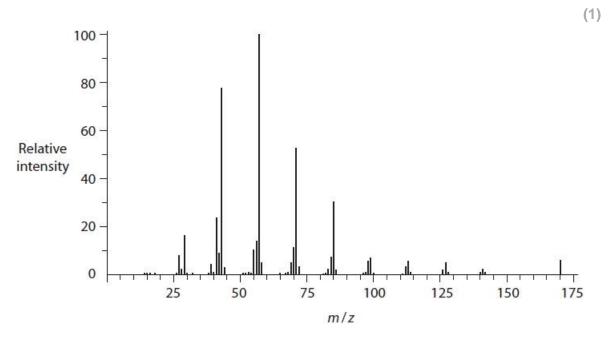
This is a question about the analysis of three aromatic substances with —OH groups.



Spectroscopy is an effective means of distinguishing between molecules.

| (i) Compare and contrast the infrared spectra of phenol, phenylmethanol and benzoic acid. Include relevant bonds and their wavenumber ranges using the Data Booklet. |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (5)                                                                                                                                                                  |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |
|                                                                                                                                                                      |

| phenylmethanol. Use the information in the Data Booklet to help you.                                                                                                                                               |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| H                                                                                                                                                                                                                  | (3)  |
| Н—С—ОН                                                                                                                                                                                                             |      |
| H C C H                                                                                                                                                                                                            |      |
| H C H                                                                                                                                                                                                              |      |
| phenylmethanol                                                                                                                                                                                                     |      |
|                                                                                                                                                                                                                    |      |
|                                                                                                                                                                                                                    |      |
|                                                                                                                                                                                                                    | -    |
|                                                                                                                                                                                                                    | •    |
|                                                                                                                                                                                                                    | •    |
|                                                                                                                                                                                                                    | •    |
| (iii) Give the formula of a fragment ion, with its m/z value, that you would expect to be<br>present in the mass spectrum of<br>benzoic acid but <b>not</b> in the mass spectrum of phenol or the mass spectrum of |      |
| phenylmethanol.                                                                                                                                                                                                    |      |
|                                                                                                                                                                                                                    | (2)  |
|                                                                                                                                                                                                                    |      |
|                                                                                                                                                                                                                    |      |
| (Total for question = 10 ma)                                                                                                                                                                                       | rks) |


(ii) Predict the number of peaks present, and their chemical shifts, in the  $^{13}\mathrm{C}$  nuclear magnetic resonance (NMR) spectrum of

#### Q11.

This question is about isotopes, mass spectra and hydrocarbons.

The mass spectrum of a hydrocarbon,  ${\bf B}$ , which has a molecular formula  $C_xH_y$ , is shown.

(i) Determine the relative molecular mass of compound B.



Relative molecular mass of compound **B** is .....

(ii) Deduce the molecular formula of hydrocarbon B.

(1)

(Total for question = 2 marks)

# Mark Scheme

Q1.

| Question<br>Number | Acceptable Answers                                             | Additional Guidance                                                                                                                                          | Mark |
|--------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (i)                | (identify the peak at the)<br>highest/largest <i>m/z</i> value | Allow Peak (furthest) to the right/last peak on the spectrum  Do not award the mark for "largest peak" / "highest peak"  Ignore "parent ion" / molecular ion | (1)  |
| Question           | Acceptable Accesses                                            | peak / References to m/z = 86  Additional Guidance                                                                                                           | Mark |
| Number             | Acceptable Answers                                             | Additional Guidance                                                                                                                                          |      |
| (ii)               | H H H H H O H O H H C C C + H H H H H H H H H H H H H H        | Allow positive charge anywhere on structure                                                                                                                  | (2)  |
|                    | (1) (1)                                                        | Ignore open bonds                                                                                                                                            |      |
|                    |                                                                | Penalise non-displayed formulae once only                                                                                                                    |      |
|                    |                                                                | Ignore brackets around the structure                                                                                                                         |      |
|                    |                                                                | Penalise missing charge once only                                                                                                                            |      |

## Q2.

| Question<br>Number | Answer                                                                                                             | Additional Guidance                                                                                                                                                            | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (i)                | An answer that makes reference to the following points:  • chlorine / Cl <sub>2</sub> and ultraviolet / uv (light) | Allow sunlight Ignore chlorine radicals Ignore temperatures Do not award presence of an additional catalyst Do not award hydrogen chloride / HCI / hydrochloric acid / HCI(aq) | (1)  |

| Question<br>Number | Answer                                                                                                            | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------|------|
| (ii)               | The only correct answer is <b>C</b> (free radical substitution)                                                   | (1)  |
|                    | <b>A</b> is not correct because as ethane is saturated the reaction is a substitution                             |      |
|                    | <b>B</b> is not correct because as ethane is saturated the reaction is a substitution                             |      |
|                    | <b>D</b> is not correct because as ethane has no bonds with significant polarity the reaction is not nucleophilic |      |

| Question<br>Number | Answer                                                                                                                                         | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                   | Mark |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (iii)              | chloroethane reacts with a chlorine radical OR  both correct structure formulae of the products including identification of which is which (1) | Allow radical dots anywhere on the radical species throughout  CH <sub>3</sub> CH <sub>2</sub> Cl + Cl• → •CH <sub>2</sub> CH <sub>2</sub> Cl + HCl or  CH <sub>3</sub> CH <sub>2</sub> Cl + Cl• → CH <sub>3</sub> CHCl• + HCl Allow  C <sub>2</sub> H <sub>5</sub> Cl + Cl• → C <sub>2</sub> H <sub>4</sub> Cl• + HCl  CH <sub>3</sub> CHCl <sub>2</sub> 1,1-dichloroethane  CH <sub>2</sub> ClCH <sub>2</sub> Cl 1,2-dichloroethane | (3)  |
|                    | formation of     1,1-dichloroethane     via radical     mechanism  OR                                                                          | CH <sub>3</sub> CHCl• + Cl• $\rightarrow$ CH <sub>3</sub> CHCl <sub>2</sub> or CH <sub>3</sub> CHCl• + Cl <sub>2</sub> $\rightarrow$ CH <sub>3</sub> CHCl <sub>2</sub> + Cl• Ignore reactions of C <sub>2</sub> H <sub>4</sub> Cl•                                                                                                                                                                                                    |      |

| overall equation for<br>the formation of<br>1,1-dichloroethane (1) | CH <sub>3</sub> CH <sub>2</sub> CI + Cl <sub>2</sub> → CH <sub>3</sub> CH <sub>2</sub> Cl <sub>2</sub> + HCl                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| formation of     1,2-dichloroethane     via radical mechanism  OR  | •CH <sub>2</sub> CH <sub>2</sub> CI + CI• $\rightarrow$ CH <sub>2</sub> CICH <sub>2</sub> CI or •CH <sub>2</sub> CH <sub>2</sub> CI + CI• $\rightarrow$ CH <sub>2</sub> CICH <sub>2</sub> CI + CI• Ignore reactions of C <sub>2</sub> H <sub>4</sub> CI•                                                                                                                                                                                                                                                                                                             |
| equation for the (1)<br>formation of<br>1,2- dichloroethane        | CH <sub>3</sub> CH <sub>2</sub> CI + Cl <sub>2</sub> $\rightarrow$ CH <sub>2</sub> CICH <sub>2</sub> CI + HCI  If M2 and M3 are not scored allow (1) for a balanced equation for the reaction of C <sub>2</sub> H <sub>4</sub> Cl• with Cl• or Cl <sub>2</sub> to form C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> (examples shown)  C <sub>2</sub> H <sub>4</sub> Cl• + Cl• $\rightarrow$ C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> or  C <sub>2</sub> H <sub>4</sub> Cl• + Cl <sub>2</sub> $\rightarrow$ C <sub>2</sub> H <sub>4</sub> Cl <sub>2</sub> + Cl• |

| Question<br>Number | Answer                                                                                                                                                    | Additional Guidance                                                                                                                                                   | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (iv)               | An answer that makes reference to the following points:  • 98 peak is due to C <sub>2</sub> H <sub>4</sub> <sup>35</sup> Cl <sub>2</sub> <sup>+</sup> and | Allow C <sub>2</sub> H <sub>4</sub> <sup>35</sup> Cl <sup>35</sup> Cl <sup>+</sup> Allow C <sub>2</sub> H <sub>4</sub> <sup>37</sup> Cl <sup>37</sup> Cl <sup>+</sup> | (2)  |
|                    | 102 peak is due to $C_2H_4^{37}CI_2^+$ (1)  • 100 peak is due to $C_2H_4^{35}CI^{37}CI^+$ (1)                                                             | Allow structural formulae<br>of the molecular ions of<br>either 1,1- or 1,2-<br>dichloroethane or both                                                                |      |
|                    | ¥                                                                                                                                                         | Allow structures with the positive charge anywhere including outside of brackets of any type.  Penalise omission of + once only                                       |      |

| Question | Answer                                                           | Additional Guidance                                                                                                                                                                                                                     | Mark |
|----------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Number   |                                                                  |                                                                                                                                                                                                                                         |      |
| (v)      | An answer that makes reference to the following point            | Answer must refer to the isotopes of chlorine. Ignore comments about isotopes of carbon or hydrogen or just isotopes                                                                                                                    | (1)  |
|          | • <sup>35</sup> Cl and <sup>37</sup> Cl atoms are in a 3:1 ratio | Allow a larger proportion of chlorine atoms are chlorine-35 than chlorine-37 Allow the ratio of the peak heights to be 9:6:1 Allow the abundance of chlorine- 35 and chlorine-37 are different Allow there are two isotopes of chlorine |      |

| Question<br>Number | Answer                                                                                                                                                              | Additional Guidance                                                                                                                                                                                                                                         | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (vi)               | An answer that makes reference to the following points:  Either  • the peaks are formed by fragments containing both chlorine atoms attached to one carbon atom     | Allow a diagram showing the fragmentation of 1,1- dichloromethane to form a fragment containing one carbon and two chlorine atoms Allow the use of molecule instead of fragment  Do not award fragments where the number of hydrogens on the carbon changes | (2)  |
|                    | or<br>the fragments are<br>CH <sup>35</sup> Cl <sup>37</sup> Cl <sup>+</sup> ,<br>CH <sup>35</sup> Cl <sub>2</sub> (1)                                              | Allow just CHCl <sub>2</sub> <sup>+</sup> Do not penalise the absence of the positive charge Do not award fragments where the number of hydrogens changes to allow for the different masses                                                                 |      |
|                    | this fragmentation / configuration is only possible from 1,1-dichloroethane / is not possible from 1,2-dichloroethane (1)                                           | Allow only 1,1-dichloroethane has two chlorines on the same carbon / 1,2-dichlorethane does not have two chlorines on the same carbon                                                                                                                       |      |
|                    | <ul> <li>Or</li> <li>the peaks at 83, 85 and 87 represent the loss of a CH<sub>3</sub> group (1)</li> <li>only 1,1-dichloroethane has a methyl group (1)</li> </ul> | Allow the peaks are 15 below the molecular ion values so they represent the loss of a CH <sub>3</sub> group                                                                                                                                                 |      |

## Q3.

| Question<br>Number | Answer                                                      | Additional Guidance                                                                                           | Mark |
|--------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------|
| (i)                | An answer that makes reference to the following points:     | Example of displayed formula                                                                                  | (2)  |
|                    | <ul> <li>name (1)</li> <li>displayed formula (1)</li> </ul> | Cyclohexanone  H H H H H H Allow CH <sub>2</sub> groups Allow skeletal formula Do not award molecular formula |      |

| Question<br>Number | Answer                                                                                                                                          | Additional Guidance                                                             | Mark |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------|
| (ii)               | An answer that makes reference to the following points:                                                                                         | Allow a range within the specified range                                        | (2)  |
|                    | O-H bond (stretching) 3750 – 3200 cm <sup>-1</sup> in cyclohexanol is not present in cyclohexanone /disappears (when cyclohexanol reacts).  (1) | Allow 1725 – 1700 cm <sup>-1</sup><br>Do not allow 1740 – 1720 cm <sup>-1</sup> |      |
|                    | C=O bond (stretching) 1720 – 1700 cm <sup>-1</sup><br>appears in cyclohexanone     (1)                                                          | (aldehyde)                                                                      |      |

| Question<br>Number | Answer                           | Additional Guidance                                                                                                                                          | Mark |
|--------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (iii)              | • highest $m/z = M_{\rm r} = 98$ | Check, answer may be shown on mass spectrum Do not accept just '98' with no supporting evidence  Allow peak furthest to the right / molecular ion peak is 98 | (1)  |

| Question<br>Number | Answer                      | Additional Guidance                                                                                                                                                 | Mark |
|--------------------|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (iv)               | • fragment (1) • charge (1) | Examples of fragment structure  CH +  CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub>                               | (2)  |
|                    |                             | Allow charge anywhere on fragment, including outside brackets around the fragment Allow straight chain fragment provided it has the correct number of C and H atoms |      |

## Q4.

| Question<br>Number | Acceptable Answer                                         | Additional Guidance                                                   | Mark |
|--------------------|-----------------------------------------------------------|-----------------------------------------------------------------------|------|
| (a)                | H - C - H $H - C - H$ | display all three methyl<br>groups<br>allow -OH<br>do not award C-H-O |      |
|                    |                                                           | £                                                                     | (1)  |

| Question<br>Number | Acceptable Answer                                       | Additional Guidance | Mark |
|--------------------|---------------------------------------------------------|---------------------|------|
| (b)(i)             | An answer that makes reference to one of the following: |                     |      |
|                    | molecular ion/molecule<br>fragments/is unstable         |                     | (1)  |

| Question<br>Number | Acceptable Answer                      | Additional Guidance                                                                        | Mark |
|--------------------|----------------------------------------|--------------------------------------------------------------------------------------------|------|
| (ii)               | СН <sub>3</sub> — ст — СН <sub>3</sub> | allow + charge on any part of the ion/outside the structure but + must be shown            |      |
|                    |                                        | allow displayed/structural/skeletal/<br>molecular formulae or any<br>combination of these. | (1)  |

| Acceptable Answer                                                                     | Additional Guidance                                                                                                                                                                                                                                                                                                | Mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                       | Example of calculation                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>calculation for bonds broken in the alcohol (*)</li> <li>(1)</li> </ul>      | 3(C-C) + 9(C-H) + (C-O) +<br>(O-H)<br>=(3x347) + (9x413) + 358<br>+ 464 = (+)5580 (kJ mol <sup>-1</sup> )                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>calculation for bonds broken in oxygen</li> <li>and</li> </ul>               | 6(O=O) = (6 x 498) =<br>(+)2988 (kJ mol <sup>-1</sup> )                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| total energy for bonds broken(**) (1)                                                 | total = + 5580 + 2988 =<br>(+)8568 (kJ mol <sup>-1</sup> )<br>TE from ans * M1 + 2988                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>calculation for bonds<br/>made(***)</li> <li>(1)</li> </ul>                  | = 8(C=O) + 10(O-H)<br>= (8x805) + (10x464) = -<br>11080 (kJ mol <sup>-1</sup> )                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>calculation of Δ<sub>c</sub>H (2-methylpropan-2-ol) with sign (1)</li> </ul> | (kJ mol <sup>-1</sup> ) allow TE for answer(**) + answer(***) units not required but if given they must be correct correct final answer with no                                                                                                                                                                    | (4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                       | <ul> <li>calculation for bonds broken in the alcohol (*)         (1)</li> <li>calculation for bonds broken in oxygen         and         total energy for bonds broken(**)         (1)</li> <li>calculation for bonds made(***)         (1)</li> <li>calculation of Δ-H (2-methylpropan-2-ol) with sign</li> </ul> | • calculation for bonds broken in the alcohol (*) (1) • calculation for bonds broken in oxygen • calculation for bonds broken in oxygen  and  total energy for bonds broken(**) (1) • calculation for bonds $abcolumnta = abcolumnta = abcolum$ |

| Question<br>Number | Acceptable Answer                                                                                                                     | Additional Guidance                                                                       | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------|
| (ii)               | An explanation that makes reference to the following points:                                                                          | mark independently                                                                        |      |
|                    | incomplete combustion     (1)                                                                                                         | do not award just                                                                         |      |
|                    | <ul> <li>Δ<sub>c</sub>H (2-methylpropan-<br/>2-ol) will be less<br/>negative /less<br/>exothermic than data<br/>book value</li> </ul> | lower/smaller/decreases/ more<br>positive<br>allow reduce the magnitude (of<br>the value) |      |
|                    | (1)                                                                                                                                   |                                                                                           | (2)  |

| Question<br>Number | Acceptable Answer                                                                         | Additional Guidance                                                                                     | Mark |
|--------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------|
| (iii)              | An answer that makes reference to the following points:                                   |                                                                                                         |      |
|                    | Δ <sub>c</sub> H figures are at 298 K /data book bond energies refer to gaseous state and | allow just liquid involved                                                                              |      |
|                    | water and/or 2-methylpropan-<br>2-ol are/is (both) liquid(s) (at<br>298 K)                | do not award<br>data book bond energies<br>are mean (values)/not<br>specific to 2-methylpropan-<br>2-ol | (1)  |

## Q5.

| Question<br>Number | Acceptable Answers                                                                                                  | Additional Guidance                                                                                                                                                       | Mark |
|--------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (a)                | calculation of empirical formula     (1)                                                                            | Example of calculation  C: H: O  68.2 13.6 18.2  12 1 16  = 5.68 13.6 1.14  = 5 12 1                                                                                      | (2)  |
|                    | uses molecular ion to prove molecular formula                                                                       | Use of 88 to show molecular formula is $C_5H_{12}O$ e.g. $M_r$ is $(5x12) + (12x1) + 16 = 88$ or states that $M_r$ of empirical formula is 88                             |      |
|                    | or  • calculation of percentage of each element in compound all 3 correct scores (2) any 2 correct scores (1)       | or<br>% C = $\frac{5 \times 12 \times 100}{88}$ = 68.2<br>% H = $\frac{12 \times 1 \times 100}{88}$ = 13.6<br>88<br>% O = $\frac{1 \times 16 \times 100}{88}$ = 18.2      |      |
|                    | or  • calculation of the number of atoms of each element directly all 3 correct scores (2) any 2 correct scores (1) | or<br>C atoms = $\frac{68.2 \times 88}{100 \times 12}$ = 5<br>H atoms = $\frac{13.6 \times 88}{100 \times 1}$ = 1<br>O atoms = $\frac{18.2 \times 88}{100 \times 16}$ = 1 |      |

| Question<br>Number | Acceptable Answers             | Additional Guidance | Mark |
|--------------------|--------------------------------|---------------------|------|
| (b)(i)             | (X is a) primary/ 1° (alcohol) |                     | (1)  |

| Question<br>Number | Acceptable Answers                    | Additional Guidance                                                                                                                               | Mark |
|--------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (b)(ii)            | н—с—с—с—с—о—н                         | Allow alcohols in any<br>order<br>Allow CH <sub>3</sub> / OH                                                                                      | (3)  |
|                    | н<br>ж— <del>Г</del> —н<br>н н   н    | Allow slip of 1 H missing<br>from 1 alcohol / 1 C-C<br>bond missing                                                                               |      |
|                    | H-C-C-C-O-H                           | Ignore names, even if incorrect                                                                                                                   |      |
|                    |                                       | Penalise O-H-C- / -C-H-<br>O at end of molecule<br>once only                                                                                      |      |
|                    | H H H H H H H H H H H H H H H H H H H | If no other mark is<br>given, allow (2) for 4<br>correct skeletal /<br>structural formulae or<br>any combination of these<br>or (1) for 3 correct |      |
|                    | H                                     | Allow (2) for displayed formulae of pentan-2-ol, pentan-3-ol and 3-methylbutan-2-ol if secondary alcohol in (b)(i), or (1) for any two of those   |      |
| 0 0                | 4 correct                             | If no other mark                                                                                                                                  |      |
|                    | 3 correct                             | (3) awarded and if (b)(i) is blank or incorrect, allow (2) (2) for any 4 different                                                                |      |
|                    | 2 correct                             | alcohols with formula  C <sub>5</sub> H <sub>12</sub> O, (1) for 3 alcohols                                                                       |      |

| Question<br>Number | Acceptable Answers | Additional Guidance                                                             | Mark |
|--------------------|--------------------|---------------------------------------------------------------------------------|------|
| (b)(iii)           | • H H H            | Allow structural formula or any combination of displayed and structural formula | (1)  |
|                    | н он               | Allow + anywhere on structure or outside of a formula in a bracket              |      |
|                    |                    | Do not allow $C_2H_5O^+/C_2H_4OH^+$<br>Do not allow missing charge              |      |
|                    |                    | Allow CH <sub>3</sub> C+HOH if secondary alcohol identified in (b)(i)           |      |

| Acceptable Answers                                                                                                                                                                                           | Additional Guidance                                                                                                                                                                                                                                                                                                                                                        | Mark                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H—C—H H—C—C—C—O—H H—H—H                                                                                                                                                                                      | Allow any type of identification, including name 3-methylbutan-1-ol  Ignore incorrect name with correct structure                                                                                                                                                                                                                                                          | (2)                                                                                                                                                                                                                                                                                                                                                                                               |
| • because this is the <b>only</b> alcohol with a branched chain <u>and</u> forms CH <sub>2</sub> OHCH <sub>2</sub> + / C <sub>2</sub> H <sub>4</sub> OH+ / peak at 45 / fragment identified in (b)(iii)  (1) | Conditional on correct identification Ignore missing charge on fragment  Allow reasons why the others are not correct e.g. not pentan-1-ol as it is not branched and not 2-methylbutan-1-ol or 2,2-dimethylpropan-1-ol as they do not form CH <sub>2</sub> OHCH <sub>2</sub> <sup>+</sup> If secondary alcohol identified in (b)(i): Allow 3-methylbutan-2-ol (1) as it is |                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                              | • (1) • because this is the only alcohol with a branched chain and forms  CH <sub>2</sub> OHCH <sub>2</sub> + / C <sub>2</sub> H <sub>4</sub> OH+ / peak at 45 / fragment identified in (b)(iii)                                                                                                                                                                           | • Allow any type of identification, including name 3-methylbutan-1-ol  Ignore incorrect name with correct structure  Conditional on correct identification Ignore missing charge on fragment correct e.g. not pentan-1-ol as it is not branched and not 2-methylbutan-1-ol or 2,2-dimethylpropan-1-ol as they do not form CH <sub>2</sub> OHCH <sub>2</sub> +  If secondary alcohol identified in |

## Q6.

| Question<br>Number | Acceptable Answer                           | Additional Guidance                                                                                                                                                          | Mark |
|--------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (i)                | furthest peak to right/ highest $m/z = 154$ | Ignore just ' highest peak' may be shown on spectrum alone provided 154 stated  Allow parent ion/molecular ion/last peak at 154  Must see the figure 154 in text or on graph | (1)  |

| Question<br>Number | Acceptable Answer                                                                          | Additional Guidance                                                                                                                                                                                                                    | Mark |
|--------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (ii)               | C <sub>5</sub> H <sub>9</sub> <sup>+</sup> / [C <sub>5</sub> H <sub>9</sub> ] <sup>+</sup> | + charge is essential, allow charge anywhere on the ion/ outside / inside brackets Allow displayed/structural/skeletal formula or any combination of these. Ignore name of ion even if incorrect (Correct name: 2-methylbut-2-ene ion) | (1)  |

### Q7.

| Question<br>Number | Acceptable Answers                                                                                                                                                                                                          | Additional Guidance                                                                                                                                      | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|                    | <ul> <li>molecular ion is at m/z = 168</li> <li>or</li> <li>168 is equal to the M<sub>r</sub> of D / twice the empirical formula / 2 x 84 / 168 ÷ 2 = 84 / M<sub>r</sub> of empirical formula is 84</li> <li>(1)</li> </ul> | Allow 168 shown on spectrum along with the rest of the explanation Do not award M1 for any other value                                                   | (2)  |
|                    | • (so the molecular formula is) C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>4</sub> (1)                                                                                                                             | Stand alone mark Ignore structural / displayed / skeletal formula  Do not award C <sub>6</sub> H <sub>4</sub> N <sub>2</sub> O <sub>4</sub> <sup>+</sup> |      |

## Q8.

| Question<br>Number | Answer                                                             |     | Additional Guidance                                                                                            | Mark |
|--------------------|--------------------------------------------------------------------|-----|----------------------------------------------------------------------------------------------------------------|------|
| (i)                |                                                                    |     | Example of calculation:                                                                                        | (3)  |
|                    | <ul> <li>calculate percentage of<br/>carbon</li> </ul>             | (1) | 100 - (34.0 + 54.5) =<br>11.5%                                                                                 |      |
|                    | <ul> <li>division of all percentages<br/>by atomic mass</li> </ul> | (1) | Cl 34.0 / 35.5 = 0.95775<br>F 54.5 / 19.0 = 2.8684<br>C 11.5 / 12.0 = 0.95833                                  |      |
|                    | <ul> <li>find simplest ratio and give empirical formula</li> </ul> | (1) | Cl (0.95775 / 0.95775 = 2.9949) = 1<br>F (2.8684 / 0.95775 = 2.9949) = 3<br>C (0.95833 / 0.95775 = 2.9949) = 1 |      |
|                    |                                                                    |     | So CF <sub>3</sub> Cl / CClF <sub>3</sub>                                                                      |      |
|                    |                                                                    |     | Allow any order                                                                                                |      |
|                    |                                                                    |     | Correct answer with no working scores (3) Ignore significant figures throughout.                               |      |
| 2                  |                                                                    |     |                                                                                                                |      |

| Question<br>Number | Answer                                                                                                                                       | Additional Guidance                                                                                                     | Mark |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------|
| (ii)               | An answer that makes reference to the following points:  • molecular ion peak at 104 / 106 (which matches the mass of the empirical formula) | Do not award statements stating that the molecular ion peak is at 105 or at 104.5, unless this is a calculated average. | (1)  |

| Question<br>Number | Answer      | Additional Guidance                                                     | Mark |
|--------------------|-------------|-------------------------------------------------------------------------|------|
| (iii)              | correct ion | CF <sub>3</sub> <sup>+</sup> Do not award CF <sub>3</sub> with no plus. | (1)  |

## Q9.

| Question<br>Number | Acceptable Answers | Additional Guidance                                                                    | Mark |
|--------------------|--------------------|----------------------------------------------------------------------------------------|------|
| (i)                | C6H4+              | Allow H <sub>4</sub> C <sub>6</sub> +  Do not award just C <sub>6</sub> H <sub>4</sub> | (1)  |

| Question<br>Number | Acceptable Answers       | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                          | Mark |
|--------------------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (ii)               | • 3 correct formulae (2) | Examples of formulae  NO2  NO2  Allow (1) for any 2 correct formulae  Allow (2) for three disubstituted benzenes with incorrect substituents / (1) for any two disubstituted benzenes with incorrect substituents  Allow incorrectly displayed formulae of NO2 groups  In (c)(ii) and (iii):  Allow Kekule structures  Allow hydrogen atoms shown on benzene Ignore connectivity of NO2 groups  Penalise missing circle in benzene once only | (2)  |

| Question<br>Number | Acceptable Answers                                                                                                                                                                                                                | Additional Guidance                                                                                                                                                                                                                                                                                                                                                                                                                           | Mark |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (iii)              | D identified as 1,3-dinitrobenzene and 4 different carbon environments labelled (1)     3 different carbon environments labelled on 1,2-dinitrobenzene (1)     2 different carbon environments labelled on 1,4-dinitrobenzene (1) | Examples of identification  These labels may be shown on the structures in (c)(ii)  The identification of <b>D</b> can be assumed if it is the only structure with 4 carbon environments labelled  Allow any form of identification of the carbon environments e.g. numbers, letters, equivalent carbon environments circled  TE on disubstituted benzene substituents in (ii)  Penalise only half the carbon environments labelled once only | (3)  |

## Q10.

| Question<br>Number | Answer                                                                                                                                                                                                                                                                                                                                                             | Additional Guidance                                                                                                                                                                                                                                                                                                                            | Mark |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (i)                | An answer that makes reference to  • (M1) (similarity) all have arene C— H absorptions Either 3030 (cm <sup>-1</sup> )  or 750 and/or 700 (cm <sup>-1</sup> ) (1)  • (M2) only phenol and phenylmethanol have O—H 3750 - 3200 (cm <sup>-1</sup> ) (1)  • (M3) only benzoic acid has O—H 3300 - 2500 (cm <sup>-1</sup> ) (1)  • (M4) only benzoic acid has C=O 1700 | Bond and wavenumber ranges necessary for each mark  Do not award 880/830/780 (cm <sup>-1</sup> )  Do not award –OH / C–OH by penalising once only in M2 and M3                                                                                                                                                                                 | (5)  |
|                    | - 1680 (cm <sup>-1</sup> ) (1)  • (M5) only phenylmethanol has alkane C–H absorptions either 2962 - 2853 (cm <sup>-1</sup> ) or 1485 - 1365 (cm <sup>-1</sup> )                                                                                                                                                                                                    | All 5 correct bonds with no wavenumber ranges scores (3) 4 correct etc scores (2) and 3 correct etc scores (1)  All 5 correct wavenumber ranges with no bonds or incorrect bonds scores (3) 4 correct etc scores (2) and 3 correct etc scores (1)  Penalise any additional peaks once only  Ignore references to different fingerprint regions |      |

| Question<br>Number | Answer                                                                             | Additional Guidance                                                                            | Mark |
|--------------------|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|------|
| (ii)               | An answer that makes reference to                                                  | Allow any range within the stated ranges Penalise single values as opposed to ranges once only | (3)  |
|                    | • five peaks (in the ¹³C NMR spectrum) (1)                                         | Accept annotations on diagram                                                                  |      |
|                    | (four) aromatic peaks within the chemical shift range of 165 - 105 (ppm)     (1)   |                                                                                                |      |
|                    | (one) peak (for the C-OH) within the chemical shift range of 75 - 55 (ppm)     (1) | Penalise additional peaks once only when three or more types of peak are stated                |      |

| Question<br>Number | Answer                                                   | Additional Guidance                                                                                                                                                        | Mark |
|--------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (iii)              | An answer that makes reference to                        | Example of a suitable formula                                                                                                                                              | (2)  |
|                    | <ul> <li>suitable formula of fragment ion (1)</li> </ul> | C <sub>6</sub> H <sub>5</sub> COO+ or C <sub>6</sub> H <sub>5</sub> CO+<br>Do not award C <sub>7</sub> H <sub>5</sub> O <sub>2</sub> + or C <sub>7</sub> H <sub>5</sub> O+ |      |
|                    | • matching <i>m/z</i> value (1)                          | m/z = 121 or 105  Allow COOH* (1) Do not award bond to the fragment, e.gCOOH*  m/z = 45 (1)  No TE on incorrect fragment ions such as CH3*                                 |      |

## Q11.

| Question<br>Number | Acceptable Answer       | Additional Guidance          | Mark |
|--------------------|-------------------------|------------------------------|------|
| (i)                |                         | 470                          | (1)  |
|                    | relative molecular mass | 170<br>May be shown on graph |      |
|                    |                         | Do not award peak at 171     |      |

| Question<br>Number | Acceptable Answer                 | Additional Guidance                                                                                                                 | Mark |
|--------------------|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------|
| (ii)               | • C <sub>12</sub> H <sub>26</sub> | Allow TE from (i)<br>provided H/C could exist<br>eg DNA 57 = C <sub>4</sub> H <sub>9</sub><br>Allow C <sub>13</sub> H <sub>14</sub> | (1)  |